The coordinates of P are (12, 2).
Solution:
Given data:
[tex](x_1, y_1)= A (4, 2)[/tex] and [tex](x_2, y_2)=B(22, 2)[/tex]
P(x, y) is the point on the line segment AB.
AP : PB = m : n = 4 : 5.
That is m = 4 and n = 5.
Section formula:
[tex]$P(x, y)=\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)[/tex]
[tex]$P(x, y)=\left(\frac{4\times 22 + 5\times 4}{4+5}, \frac{4\times 2 + 5\times 2}{4+5}\right)[/tex]
[tex]$P(x, y)=\left(\frac{88 + 20}{9}, \frac{8+10}{9}\right)[/tex]
[tex]$P(x, y)=\left(\frac{108}{9}, \frac{18}{9}\right)[/tex]
P(x, y) = (12, 2)
Hence the coordinates of P are (12, 2).