Point P is on segment AB such that AP:PB is 4:5. If A has coordinates (4,2), and B has coordinates (22,2), determine and state the coordinates of P.

Respuesta :

The coordinates of P are (12, 2).

Solution:

Given data:

[tex](x_1, y_1)= A (4, 2)[/tex]  and [tex](x_2, y_2)=B(22, 2)[/tex]

P(x, y) is the point on the line segment AB.

AP : PB = m : n = 4 : 5.

That is m = 4 and n = 5.

Section formula:

[tex]$P(x, y)=\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)[/tex]

[tex]$P(x, y)=\left(\frac{4\times 22 + 5\times 4}{4+5}, \frac{4\times 2 + 5\times 2}{4+5}\right)[/tex]

[tex]$P(x, y)=\left(\frac{88 + 20}{9}, \frac{8+10}{9}\right)[/tex]

[tex]$P(x, y)=\left(\frac{108}{9}, \frac{18}{9}\right)[/tex]

P(x, y) = (12, 2)

Hence the coordinates of P are (12, 2).

ACCESS MORE