contestada

Steam is to be condensed on the shell side of a heat exchanger at 150 oF. Cooling water enters the tubes at 60 oF at a rate of 44 lbm/s and leaves at 73 oF. Assuming the heat exchanger to be well-insulated, determine (a) the rate of heat transfer in the heat exchanger, and (b) the rate of entropy generation in the heat exchanger.

Respuesta :

Answer:

a. 572Btu/s

b.0.1483Btu/s.R

Explanation:

a.Assume a steady state operation, KE and PE are both neglected and fluids properties are constant.

From table A-3E, the specific heat of water is [tex]c_p=1.0\ Btu/lbm.F[/tex], and the steam properties as, A-4E:

[tex]h_{fg}=1007.8Btu/lbm, s_{fg}=1.6529Btu/lbm.R[/tex]

Using the energy balance for the system:

[tex]\dot E_{in}-\dot E_{out}=\bigtriangleup \dot E_{sys}=0\\\\\dot E_{in}=\dot E_{out}\\\\\dot Q_{in}+\dot m_{cw}h_1=\dot m_{cw}h_2\\\\\dot Q_{in}=\dot m_{cw}c_p(T_{out}-T_{in})\\\\\dot Q_{in}=44\times 1.0\times (73-60)=572\ Btu/s[/tex]

Hence, the rate of heat transfer in the heat exchanger is 572Btu/s

b. Heat gained by the water is equal to the heat lost by the condensing steam.

-The rate of steam condensation is expressed as:

[tex]\dot m_{steam}=\frac{\dot Q}{h_{fg}}\\\\\dot m_{steam}=\frac{572}{1007.8}=0.5676lbm/s[/tex]

Entropy generation in the heat exchanger could be defined using the entropy balance on the system:

[tex]\dot S_{in}-\dot S_{out}+\dot S_{gen}=\bigtriangleup \dot S_{sys}\\\\\dot m_1s_1+\dot m_3s_3-\dot m_2s_2-\dot m_4s_4+\dot S_{gen}=0\\\\\dot m_ws_1+\dot m_ss_3-\dot m_ws_2-\dot m_ss_4+\dot S_{gen}=0\\\\\dot S_{gen}=\dot m_w(s_2-s_1)+\dot m_s(s_4-s_3)\\\\\dot S_{gen}=\dot m c_p \ In(\frac{T_2}{T_1})-\dot m_ss_{fg}\\\\\\\dot S_{gen}=4.4\times 1.0\times \ In( {73+460)/(60+460)}-0.5676\times 1.6529\\\\=0.1483\ Btu/s.R[/tex]

Hence,the rate of entropy generation in the heat exchanger. is 0.1483Btu/s.R

ACCESS MORE