Option A: The football will take 0.72 seconds to hit the ground.
Explanation:
Given that the equation is [tex]h=-16 t^{2}+6 t+4[/tex]
We need to determine how long will it take the football to hit the ground.
Let us substitute h = 0 in the above equation.
Thus, we have,
[tex]0=-16 t^{2}+6 t+4[/tex]
Now, we shall simplifying the equation using the quadratic formula.
The formula is given by
[tex]x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]
Substituting the values [tex]a=-16, b=6, c=4[/tex] in the above formula, we get,
[tex]t=\frac{-6 \pm \sqrt{6^{2}-4(-16) 4}}{2(-16)}[/tex]
Simplifying, we get,
[tex]t=\frac{-6 \pm \sqrt{36+256}}{-32}[/tex]
[tex]t=\frac{-6 \pm \sqrt{292}}{-32}[/tex]
[tex]t=\frac{-6 \pm 2\sqrt{73}}{-32}[/tex]
Taking out 2 as a common term, we get,
[tex]t=-\frac{2(-3 \pm \sqrt{73})}{32}[/tex]
Dividing, we get,
[tex]t=-\frac{-3 \pm \sqrt{73}}{16}[/tex]
Thus, the roots of the equation are [tex]t=-\frac{-3+\sqrt{73}}{16}, t=\frac{3+\sqrt{73}}{16}[/tex]
Simplifying the roots of the equation, we have,
[tex]t=-0.35[/tex] and [tex]t=0.72[/tex]
Since, t cannot take a negative value, we have,
[tex]t=0.72[/tex]
Therefore, the football will take 0.72 seconds to hit the ground.
Hence, Option A is the correct answer.