Respuesta :
Answer:
av=0.333m/s, U=3.3466J
b.
[tex]v_{A2}=-1.333m/s,\\ v_{B2}=0.667m/s[/tex]
Explanation:
a. let [tex]m_A[/tex] be the mass of block A, and[tex]m_B=10.0kg[/tex] be the mass of block B. The initial velocity of A,[tex]\rightarrow v_A_1=2.0m/s[/tex]
-The initial momentum =Final momentum since there's no external net forces.
[tex]pA_1+pB_1=pA_2+pB_2\\\\P=mv\\\\\therefore m_Av_A_1+m_Bv_B_1=m_Av_{A2}+m_Bv_{B2}[/tex]
Relative velocity before and after collision have the same magnitude but opposite direction (for elastic collisions):
[tex]v_A_1-v_B_1=v_{B2}-v_{A2}[/tex]
-Applying the conservation of momentum. The blocks have the same velocity after collision:
[tex]v_{B2}=v_{A2}=v_2\\\\2\times 2+10\times 0=2v_2+10v_2\\\\v_2=0.3333m/s[/tex]
#Total Mechanical energy before and after the elastic collision is equal:
[tex]K_1+U_{el,1}=K_2+U_{el,2}\\\\#Springs \ in \ equilibrium \ before \ collision\\\\U_{el,2}=K_1-K_2=0.5m_Av_A_1^2-0.5(m_A+m_B)v_2^2\\\\U_{el,2}=0.5\times 2\times 2^2-0.5(2+10)(0.333)^2\\\\U_{el,2}=3.3466J[/tex]
Hence, the maxumim energy stored is U=3.3466J, and the velocity=0.333m/s
b. Taking the end collision:
From a above, [tex]m_A=2.0kg, m_B=10kg, v_A=2.0,v_B_1=0[/tex]
We plug these values in the equation:
[tex]m_Av_A_1+m_Bv_B_1=m_Av_{A2}+m_Bv_{B2}[/tex]
[tex]2\times2+10\times0=2v_A_2+10v_B_2\\\\2=v_A_2+5v_B_2\\\\#Eqtn 2:\\v_A_1-v_B_1=v_{B2}-v_{A2}\\\\2-0=v_{B2}-v_{A2}\\\\2=v_{B2}-v_{A2}\\\\#Solve \ to \ eliminate \ v_{A2}\\\\6v_{B2}=2.0\\\\v_{B2}==0.667m/s\\\\#Substitute \ to \ get \ v_{A2}\\\\v_{A2}=\frac{4}{6}-2=1.333m/s[/tex]