Blocks A (mass 2.00 kg) and B (mass 6.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. (a) Find the maximum energy stored in the spring bumpers and the velocity of each block at that time. (b) Find the velocity of each block after they have moved apart.

Respuesta :

Answer:

av=0.333m/s, U=3.3466J

b.

[tex]v_{A2}=-1.333m/s,\\ v_{B2}=0.667m/s[/tex]

Explanation:

a. let [tex]m_A[/tex] be the mass of block A, and[tex]m_B=10.0kg[/tex] be the mass of block B. The initial velocity of A,[tex]\rightarrow v_A_1=2.0m/s[/tex]

-The initial momentum =Final momentum since there's no external net forces.

[tex]pA_1+pB_1=pA_2+pB_2\\\\P=mv\\\\\therefore m_Av_A_1+m_Bv_B_1=m_Av_{A2}+m_Bv_{B2}[/tex]

Relative velocity before and after collision have the same magnitude but opposite direction (for elastic collisions):

[tex]v_A_1-v_B_1=v_{B2}-v_{A2}[/tex]

-Applying the conservation of momentum. The blocks have the same velocity after collision:

[tex]v_{B2}=v_{A2}=v_2\\\\2\times 2+10\times 0=2v_2+10v_2\\\\v_2=0.3333m/s[/tex]

#Total Mechanical energy before and after the elastic collision is equal:

[tex]K_1+U_{el,1}=K_2+U_{el,2}\\\\#Springs \ in \ equilibrium \ before \ collision\\\\U_{el,2}=K_1-K_2=0.5m_Av_A_1^2-0.5(m_A+m_B)v_2^2\\\\U_{el,2}=0.5\times 2\times 2^2-0.5(2+10)(0.333)^2\\\\U_{el,2}=3.3466J[/tex]

Hence, the maxumim energy stored is U=3.3466J, and the velocity=0.333m/s

b. Taking the end collision:

From a above, [tex]m_A=2.0kg, m_B=10kg, v_A=2.0,v_B_1=0[/tex]

We plug these values in the equation:

[tex]m_Av_A_1+m_Bv_B_1=m_Av_{A2}+m_Bv_{B2}[/tex]

[tex]2\times2+10\times0=2v_A_2+10v_B_2\\\\2=v_A_2+5v_B_2\\\\#Eqtn 2:\\v_A_1-v_B_1=v_{B2}-v_{A2}\\\\2-0=v_{B2}-v_{A2}\\\\2=v_{B2}-v_{A2}\\\\#Solve \ to \ eliminate \ v_{A2}\\\\6v_{B2}=2.0\\\\v_{B2}==0.667m/s\\\\#Substitute \ to \ get \ v_{A2}\\\\v_{A2}=\frac{4}{6}-2=1.333m/s[/tex]

ACCESS MORE