An experimental bicycle wheel is placed on a test stand so that it is free to turn on its axle. If a constant net torque of 6.00 N * m is applied to the tire for 2.00 s, the angular speed of the tire increases from zero to 120 rev/min. The external torque is then removed, and the wheel is brought to rest in 145 s by friction in its bearings.

Compute the moment of inertia of the wheel about the axis of rotation.
I = ? Units= kg * m^2

Compute the friction torque.
Units = N * m

Compute the total number of revolutions made by the wheel in the 145 s time interval.
N= ?

Respuesta :

Answer:

[tex]I=\frac{3}{\pi}\ kg.m^2[/tex]

[tex]\tau_f=\frac{1}{725} \ N.m[/tex]

[tex]n=17255\ rev[/tex]

Explanation:

Given:

Torque applied on the wheel, [tex]\tau=6\ N.m[/tex]

time for which the torque is applied, [tex]t=2\ s[/tex]

initial angular speed, [tex]\omega_i=0\ rad.s^{-1}[/tex]

final angular speed, [tex]\omega_f=120\ rev.min^{-1}=120\times \frac{2\pi}{60}=4\pi\ rad.s^{-1}[/tex]

time after which the wheel comes to rest due to friction, [tex]t_r=145\ s[/tex]

As most mass of the tyre is on its periphery so we consider it as a ring:

Moment of inertia of the ring is given as,

[tex]I=\frac{\tau}{\alpha}[/tex] ....................(1)

where:

[tex]\alpha=[/tex] angular acceleration

given as:

[tex]\alpha=\frac{\omega_f-\omega_i}{t}[/tex]

[tex]\alpha=\frac{4\pi-0}{2}[/tex]

[tex]\alpha=2\pi\ rad.s^{-2}[/tex]

Now

[tex]I=\frac{6}{2\pi}[/tex]

[tex]I=\frac{3}{\pi}\ kg.m^2[/tex]

The torque when the wheel comes to rest form the final velocity to zero:

The angular acceleration during the deceleration will be:

[tex]\alpha_r=\frac{0-2\pi}{145}[/tex]

[tex]\alpha_r=-\frac{2\pi}{145} \ rad.s^{-2}[/tex] (negative sign denotes deceleration)

From eq. (1)

[tex]\tau_f=I.\alpha_r[/tex]

[tex]\tau_f=0.1\times \frac{2\pi}{145}[/tex]

[tex]\tau_f=\frac{1}{725} \ N.m[/tex]

Now the no. of revolutions made in 145 seconds:

Using equation of motion:

[tex]n=\omega_f.t+\alpha_r.t^2[/tex] (keep values in revolutions)

[tex]n=120\times 145-\frac{1}{145} \times 145^2[/tex]            (∵ [tex]rad.s^{-2}\div (2\pi)=rev.s^{-2}[/tex])

[tex]n=17255\ rev[/tex]

ACCESS MORE