Respuesta :
Answer:
[tex]I=\frac{3}{\pi}\ kg.m^2[/tex]
[tex]\tau_f=\frac{1}{725} \ N.m[/tex]
[tex]n=17255\ rev[/tex]
Explanation:
Given:
Torque applied on the wheel, [tex]\tau=6\ N.m[/tex]
time for which the torque is applied, [tex]t=2\ s[/tex]
initial angular speed, [tex]\omega_i=0\ rad.s^{-1}[/tex]
final angular speed, [tex]\omega_f=120\ rev.min^{-1}=120\times \frac{2\pi}{60}=4\pi\ rad.s^{-1}[/tex]
time after which the wheel comes to rest due to friction, [tex]t_r=145\ s[/tex]
As most mass of the tyre is on its periphery so we consider it as a ring:
Moment of inertia of the ring is given as,
[tex]I=\frac{\tau}{\alpha}[/tex] ....................(1)
where:
[tex]\alpha=[/tex] angular acceleration
given as:
[tex]\alpha=\frac{\omega_f-\omega_i}{t}[/tex]
[tex]\alpha=\frac{4\pi-0}{2}[/tex]
[tex]\alpha=2\pi\ rad.s^{-2}[/tex]
Now
[tex]I=\frac{6}{2\pi}[/tex]
[tex]I=\frac{3}{\pi}\ kg.m^2[/tex]
The torque when the wheel comes to rest form the final velocity to zero:
The angular acceleration during the deceleration will be:
[tex]\alpha_r=\frac{0-2\pi}{145}[/tex]
[tex]\alpha_r=-\frac{2\pi}{145} \ rad.s^{-2}[/tex] (negative sign denotes deceleration)
From eq. (1)
[tex]\tau_f=I.\alpha_r[/tex]
[tex]\tau_f=0.1\times \frac{2\pi}{145}[/tex]
[tex]\tau_f=\frac{1}{725} \ N.m[/tex]
Now the no. of revolutions made in 145 seconds:
Using equation of motion:
[tex]n=\omega_f.t+\alpha_r.t^2[/tex] (keep values in revolutions)
[tex]n=120\times 145-\frac{1}{145} \times 145^2[/tex] (∵ [tex]rad.s^{-2}\div (2\pi)=rev.s^{-2}[/tex])
[tex]n=17255\ rev[/tex]