Rank the transformers on the basis of their rms secondary voltage.

Rank from largest to smallest. To rank items as equivalent, overlap them.

#1

Vp=240V
Np=1000turns
Ns=2000turns

#2

Vp=480V
Np=4000turns
Ns=2000turns

#3

Vp=480V
Np=2000turns
Ns=1000turns

#4

Vp=120V
Np=500turns
Ns=2000turns

#5

Vp=240V
Np=1000turns
Ns=500turns

Respuesta :

Answer:

[tex]V_{s1}=V_{s4}>[/tex][tex]V_{s2}=V_{s3}>V_{s5}[/tex]

Explanation:

Given:

Here the symbols used mean:

[tex]V_p=[/tex] voltage in the primary coil

[tex]V_s=[/tex] voltage in the secondary coil

[tex]N_s=[/tex] no. of turns in the secondary coil

[tex]N_p=[/tex] no. of turns in the primary coil

We know that the above quantities are related as:

[tex]\frac{N_p}{N_s} =\frac{V_p}{V_s}[/tex]

  • Case:#1

[tex]V_p=240V\\N_p=1000\\N_s=2000[/tex]

[tex]\frac{1000}{2000} =\frac{240}{V_s}[/tex]

[tex]V_s=480\ V[/tex]

  • Case:#2

[tex]Vp=480V\\Np=4000\\Ns=2000[/tex]

[tex]\frac{4000}{2000} =\frac{480}{V_s}[/tex]

[tex]V_s=240\ V[/tex]

  • Case:#3

[tex]Vp=480V\\Np=2000\\Ns=1000[/tex]

[tex]\frac{2000}{1000} =\frac{480}{V_s}[/tex]

[tex]V_s=240\ V[/tex]

  • Case:#4

[tex]Vp=120V\\Np=500\\Ns=2000[/tex]

[tex]\frac{500}{2000} =\frac{120}{V_s}[/tex]

[tex]V_s=480\ V[/tex]

  • Case:#5

[tex]Vp=240V\\Np=1000\\Ns=500[/tex]

[tex]\frac{1000}{500} =\frac{240}{V_s}[/tex]

[tex]V_s=120\ V[/tex]

So, we rank:

[tex]V_{s1}=V_{s4}>[/tex][tex]V_{s2}=V_{s3}>V_{s5}[/tex]

Answer:

Explanation:

Case 1 #

Vp = 240 V, Np = 1000, Ns = 2000

Vs / Vp = Ns / Np

Vs / 240 = 2000 / 1000

Vs = 480 V

Case 2 #

Vp = 480 V, Np = 4000, Ns = 2000

Vs / Vp = Ns / Np

Vs / 480 = 2000 / 4000

Vs = 240 V

Case 3 #

Vp = 480 V, Np = 500, Ns = 2000

Vs / Vp = Ns / Np

Vs / 480 = 2000 / 500

Vs = 1920 V

Case 4 #

Vp = 120 V, Np = 500, Ns = 2000

Vs / Vp = Ns / Np

Vs / 120 = 2000 / 500

Vs = 480 V

Case 5 #

Vp = 240 V, Np = 1000, Ns = 500

Vs / Vp = Ns / Np

Vs / 240 = 500 / 1000

Vs = 120 V

V3 > V4 = V1 > V2 > V5

ACCESS MORE