Answer:
using bond energies = - 37 kJ
using enthalpies of formation = - 45.7 kJ
Explanation:
From the reaction;
CH2═CH2(g) + H2O(g) -------> CH3CH2OH(g)
From the above reaction; there are 4 (C-H) bonds , 1 ( C=C) and 2 (H-O) of ethene which forms 5(C-H) bonds, 1 (C-C) and 1 (C-O) and 1(H-O) bonds.
Using Bond Energies; the heat of the reaction can be written as:
[tex]\delta H^0_ {rxn}=[/tex] ∑ energy of old bond breaking + ∑ energies of the new bond formation.
[tex]\delta H^0_ {rxn}=[/tex] ∑ [tex][(4 * BE_{C-H}) + BE_{C-C}) + + BE_{O-H})][/tex]+ ∑ [tex][(5 * BE_{C-H}) + BE_{C-C}) + BE_{O-H}+ BE_{C-O})][/tex]
[tex]\delta H^0_ {rxn}=[/tex] ∑[tex][4*413 kJ)+(614kJ)+(2*647kJ][/tex]+ ∑ [tex](5*-413kJ)+(-347kJ)+(-467kJ)+(-358kJ)][/tex]
[tex]\delta H^0_ {rxn}=[/tex] -37 kJ
To calculate the heats of reaction by using enthalpies of formation; we have:
[tex]\delta H^0_ {rxn}=[/tex] ∑ [tex]\delta H^0_ {products}[/tex] - ∑ [tex]\delta H^0_ {reactants}[/tex]
[tex]\delta H^0_ {rxn}=[/tex] ∑ [tex]\delta H^0_ {CH_3CH_2OH}[/tex] - ∑ [tex]\delta H^0_ {CH_2=CH_2+H_2O}[/tex]
[tex]\delta H^0_ {rxn}=[/tex] (-235.1 kJ) - [(+52.47 kJ) + (-241.826 kJ)]
[tex]\delta H^0_ {rxn}=[/tex] -45.7 kJ