Respuesta :

Option D: [tex](2,0) \text { and }(-3,5)[/tex] is the solution to the system of equations.

Explanation:

Given that the system of equations are [tex]x=2-y[/tex] and [tex]y=x^{2} -4[/tex]

We need to determine the solution to the system of equations graphically.

Let us consider plotting the equation [tex]x=2-y[/tex] in the graph.

First, we shall determine the x and y intercepts for the equation [tex]x=2-y[/tex]

When [tex]x=0[/tex], we get,

[tex]0=2-y[/tex]

[tex]2=y[/tex]

Similarly, when [tex]y=0[/tex], we get,

[tex]x=2-0[/tex]

[tex]x=2[/tex]

Thus, let us join the coordinates [tex](0,2)[/tex] and [tex](2,0)[/tex] to get the equation of the line.

Let us consider plotting the equation [tex]y=x^{2} -4[/tex] in the graph.

When [tex]x=0[/tex] ⇒ [tex]y=-4[/tex]

When [tex]y=0[/tex] ⇒ [tex]x=\pm2[/tex]

Thus, let us join the coordinates [tex](0,-4)[/tex], [tex](2,0)[/tex] and [tex](-2,0)[/tex] to get the equation of the parabola.

The solution of the two equations is the point of intersection of these two lines.

Hence, the lines intersect at the points [tex](2,0) \text { and }(-3,5)[/tex]

Therefore, Option D is the correct answer.

The image of the solution is attached below:

Ver imagen vijayalalitha
ACCESS MORE