Answer:
a) [tex]P(X=1)=(1-0.89)^{1-1} 0.89 = 0.89[/tex]
b) [tex]P(X=2)=(1-0.89)^{2-1} 0.89 = 0.098[/tex]
[tex]P(X=3)=(1-0.89)^{3-1} 0.89 = 0.0108[/tex]
And adding we got:
[tex]P(2 \leq X\leq 3)=P(X=2)+P(X=3)= 0.098+0.0108= 0.1088[/tex]
Step-by-step explanation:
Previous concepts
The geometric distribution represents "the number of failures before you get a success in a series of Bernoulli trials. This discrete probability distribution is represented by the probability density function:"
[tex]P(X=x)=(1-p)^{x-1} p[/tex]
Let X the random variable that measures the number os trials until the first success, we know that X follows this distribution:
[tex]X\sim Geo (1-p)[/tex]
Part a
For this case we want this probability
[tex]P(X=1)=(1-0.89)^{1-1} 0.89 = 0.89[/tex]
Part b
For this case we want this probability:
[tex]P(2 \leq X\leq 3)=P(X=2)+P(X=3)[/tex]
If we find the individual probabilities we got:
[tex]P(X=2)=(1-0.89)^{2-1} 0.89 = 0.098[/tex]
[tex]P(X=3)=(1-0.89)^{3-1} 0.89 = 0.0108[/tex]
And adding we got:
[tex]P(2 \leq X\leq 3)=P(X=2)+P(X=3)= 0.098+0.0108= 0.1088[/tex]