Answer:
A. 6.36 lbm/s
b. [tex]T_2=341\textdegree F[/tex]
Explanation:
a. Given the following information;
#Compressor inlet:
Air pressure,[tex]P_1=14.7psia,T_1=60\textdegree F[/tex]
#Compressor outlet:
[tex]Air \ Pressure, P_2=150psia\\\\Air \ volume \ flow \ rate, \dot V_1=5000ft^3/min[/tex]
#Cooling rate,
[tex]q_{out}=10Btu/lbm, \dot W=700hp[/tex]
# From table A-1E
Gas constant of air [tex]R=0.3704\ psia.ft^3/lbm.R[/tex]
Specific enthalpy at [tex]P_1=520R-h_1=124.27Btu/lbm[/tex]
Using the mass balance:
[tex]\dot m_{in}-\dot m_{out}=\bigtriangleup \dot m_{sys}=0.0\\\\\dot m_{in}=\dot m_{out}\\\\v_1=\frac{RT_1}{P_1}\\\\v_1=\frac{0.3704\times520}{14.7}\\\\\\v_1=13.1026ft^3/lbm\\\\\dot m=\frac{5000/60}{13.1025}\\\\\dot m=6.36\ lbm/s[/tex]
Hence, the mass flow rate of the air is 6.36lbm/s
b The specific enthalpy at the exit is defined as the energy balance on the system:
[tex]\dot m_{in}-\dot m_{out}=\bigtriangleup \dot m_{sys}=0.0\\\\\dot m_{in}=\dot m_{out}\\\\\dot W_{in}+ \dot mh_1=\dot Q_{out}+\dot m_2\\\\h_2=\frac{\dot W_{in}-\dot Q_{out}}{\dot m}+h_1\\\\h_2=\frac{700\times 0.7068-10\times 6.36}{6.36}+124.27\\\\h_2=192.06\ Btu/lbm\\\\#at \ h_2=182.06Btu/lbm, T_2=801R=341\textdegree F[/tex]
Hence, the temperature at the compressor exit [tex]T_2=341\textdegree F[/tex]