Answer:
a) The expected value is given by:
[tex] E(X) =\frac{a+b}{2}= \frac{10+12}{2}= 11[/tex]
The variance is given by:
[tex] Var(X) = \frac{(b-a)^2}{12}= \frac{(12-10)^2}{12}= 0.3333[/tex]
And the standard deviation is just the square root of the variance and we got:
[tex] Sd(x) = \sqrt{0.3333}= 0.5774[/tex]
b) [tex] P(X<11)[/tex]
And we can use the cumulative distribution function given by:
[tex] F(x) = \frac{x-a}{b-a}, a \leq x \leq b[/tex]
And using this function we got:
[tex] P(X<11) = \frac{11-10}{12-10}= 0.50[/tex]
c) [tex] P(X>10.5)[/tex]
And using the complement rule and the cumulative distribution function we got:
[tex] P(X>10.5)= 1-P(X<10.5) = 1-\frac{10.5-10}{12-10}= 1-0.25 = 0.75[/tex]
Step-by-step explanation:
For this case we define the random variable X=quantity put in each bag , and we know that the distribution for X is given by:
[tex] X \sim Unif (a= 10, b =12)[/tex]
Part a
The expected value is given by:
[tex] E(X) =\frac{a+b}{2}= \frac{10+12}{2}= 11[/tex]
The variance is given by:
[tex] Var(X) = \frac{(b-a)^2}{12}= \frac{(12-10)^2}{12}= 0.3333[/tex]
And the standard deviation is just the square root of the variance and we got:
[tex] Sd(x) = \sqrt{0.3333}= 0.5774[/tex]
Part b
For this case we want this probability:
[tex] P(X<11)[/tex]
And we can use the cumulative distribution function given by:
[tex] F(x) = \frac{x-a}{b-a}, a \leq x \leq b[/tex]
And using this function we got:
[tex] P(X<11) = \frac{11-10}{12-10}= 0.50[/tex]
Part c
For this case we want this probability:
[tex] P(X>10.5)[/tex]
And using the complement rule and the cumulative distribution function we got:
[tex] P(X>10.5)= 1-P(X<10.5) = 1-\frac{10.5-10}{12-10}= 1-0.25 = 0.75[/tex]