Respuesta :

Answer:

The radius = 4

Step-by-step explanation:

considering the equation

[tex]\left(x+2\right)^2+\left(y-4\right)^2=16[/tex]

As the standard form of the circle is

[tex]\left(x-h\right)^2+\left(y-k\right)^2=r^2[/tex]

Match the values in this circle to those of the standard form.

  • The variable  [tex]r[/tex] represents the radius of the circle,  
  • [tex]h[/tex] represents the x-offset from the origin, and  
  • [tex]k[/tex]  represents the y-offset from origin.

[tex]\mathrm{Rewrite}\:\left(x+2\right)^2+\left(y-4\right)^2=16\:\mathrm{in\:the\:form\:of\:the\:standard\:circle\:equation}[/tex]

[tex]\left(x-\left(-2\right)\right)^2+\left(y-4\right)^2=4^2[/tex]

[tex]\mathrm{Therefore\:the\:circle\:properties\:are:}[/tex]

[tex]\left(h,\:k\right)=\left(-2,\:4\right),\:r=4[/tex]

Therefore, the radius = 4

ACCESS MORE