zeros of the function y= [tex]2x^2 + 12x + 22[/tex] is [tex]x = -3+\frac{ \sqrt{8}i }{2}[/tex] & [tex]x = -3-\frac{ \sqrt{8}i }{2}[/tex].
Step-by-step explanation:
Here we have , y=[tex]2x^2 + 12x + 22[/tex] in order to find zeros of this quadratic function we get: [tex]2x^2 + 12x + 22 = 0[/tex]
⇒ [tex]2x^2 + 12x + 22 = 0[/tex]
⇒ [tex]x^2 + 6x + 11 = 0[/tex]
⇒ [tex]x = \frac{-b \pm \sqrt{b^2-4a(c)} }{2a}[/tex]
⇒ [tex]x = \frac{-(6) \pm \sqrt{6^2-4(1)(11)} }{2(1)}[/tex]
⇒ [tex]x = \frac{-6 \pm \sqrt{36-44)} }{2}[/tex]
⇒ [tex]x = \frac{-6 \pm \sqrt{8}i }{2}[/tex]
⇒ [tex]x = -3 \pm \frac{ \sqrt{8}i }{2}[/tex]
Since, we have two root one with positive & other with negative sign so :
⇒ [tex]x = -3-\frac{ \sqrt{8}i }{2}[/tex]
Therefore, zeros of the function y= [tex]2x^2 + 12x + 22[/tex] is [tex]x = -3+\frac{ \sqrt{8}i }{2}[/tex] & [tex]x = -3-\frac{ \sqrt{8}i }{2}[/tex].