Respuesta :
Answer:
2
Step-by-step explanation:
The expression to simplify is:
[tex](\frac{4^{\frac{5}{4}}*4^{\frac{1}{4}}}{4^{\frac{1}{2}}})^\frac{1}{2}[/tex]
When same base is multiplied, we ADD exponents and when same base is divided, we SUBTRACT exponents, so we can write the expression inside the parenthesis as:
[tex](\frac{4^{\frac{5}{4}}*4^{\frac{1}{4}}}{4^{\frac{1}{2}}})^\frac{1}{2}\\=(4^{\frac{5}{4}+\frac{1}{4}-\frac{1}{2}})^{\frac{1}{2}}\\=(4^1)^{\frac{1}{2}}\\=4^{\frac{1}{2}}[/tex]
Now, "to the power [tex]\frac{1}{2}[/tex]" means taking the square root, so we have:
[tex]4^{\frac{1}{2}}\\=\sqrt{4}\\=2[/tex]
The expression which is , equivalent to the expression given is; 2.
The expression given is;
[tex] {(( {4}^{ \frac{5}{4} } \times {4}^{ \frac{1}{4} } ) \div {4}^{ \frac{1}{2} } )}^{ \frac{1}{2} } [/tex]
The expression given can be evaluated as follows;
- {4^((5/4) + (1/4) - (1/2))} ^(1/2)
- 4^(4/4)^(1/2)
- = 4^(1/2)
- = 2.
Read more on indices;
https://brainly.com/question/1592472