Which expression is equivalent to (StartFraction 4 Superscript five-fourths Baseline time 4 Superscript one-fourth Baseline Over 4 Superscript one-half baseline EndFraction) Superscript one-half?
RootIndex 16 StartRoot 4 Superscript 5 Baseline EndRoot
StartRoot 2 Superscript 5 EndRoot
2
4

Respuesta :

Answer:

2

Step-by-step explanation:

The expression to simplify is:

[tex](\frac{4^{\frac{5}{4}}*4^{\frac{1}{4}}}{4^{\frac{1}{2}}})^\frac{1}{2}[/tex]

When same base is multiplied, we ADD exponents and when same base is divided, we SUBTRACT exponents, so we can write the expression inside the parenthesis as:

[tex](\frac{4^{\frac{5}{4}}*4^{\frac{1}{4}}}{4^{\frac{1}{2}}})^\frac{1}{2}\\=(4^{\frac{5}{4}+\frac{1}{4}-\frac{1}{2}})^{\frac{1}{2}}\\=(4^1)^{\frac{1}{2}}\\=4^{\frac{1}{2}}[/tex]

Now, "to the power [tex]\frac{1}{2}[/tex]" means taking the square root, so we have:

[tex]4^{\frac{1}{2}}\\=\sqrt{4}\\=2[/tex]

The expression which is , equivalent to the expression given is; 2.

The expression given is;

[tex] {(( {4}^{ \frac{5}{4} } \times {4}^{ \frac{1}{4} } ) \div {4}^{ \frac{1}{2} } )}^{ \frac{1}{2} } [/tex]

The expression given can be evaluated as follows;

  • {4^((5/4) + (1/4) - (1/2))} ^(1/2)

  • 4^(4/4)^(1/2)

  • = 4^(1/2)

  • = 2.

Read more on indices;

https://brainly.com/question/1592472

ACCESS MORE