Respuesta :
Answer:
Part 1) The volume of the object is [tex]32\pi\ cm^{3}[/tex] or [tex]100.48\ cm^{3}[/tex]
Part 2) see the procedure
Step-by-step explanation:
The picture of the question in the attached figure
Part 1) What is the volume, in cubic centimeters, of the object?
we know that
The volume of the object is equal to the volume of the cylinder plus the volume of the cone
Find the volume of the cone
The volume of the cone is equal to
[tex]V=\frac{1}{3}\pi r^{2} h[/tex]
we have
[tex]r=4/2=2\ cm[/tex] -----> the radius is half the diameter
[tex]h=3\ cm[/tex]
substitute the values
[tex]V=\frac{1}{3}\pi (2^{2})(3)=4\pi\ cm^{3}[/tex]
Find the volume of the cylinder
The volume of the cylinder is equal to
[tex]V=\pi r^{2} h[/tex]
we have
[tex]r=4/2=2\ cm[/tex] -----> the radius is half the diameter
[tex]h=(10-3)=7\ cm[/tex]
substitute the values
[tex]V=\pi (2^{2})(7)=28\pi\ cm^{3}[/tex]
Part 2) Then explain how you found the volume of the total shape
The volume of the total shape is equal to the volume of the cylinder plus the volume of the cone
[tex]4\pi\ cm^{3}+28\pi\ cm^{3}=32\pi\ cm^{3}[/tex] ------> exact value
Find the approximate value of the volume
assume
[tex]\pi=3.14[/tex]
[tex]32(3.14)=100.48\ cm^{3}[/tex]
![Ver imagen calculista](https://us-static.z-dn.net/files/d99/a7893018a8cc19de19007785acfc0818.jpg)