Answer:
Explanation:
radius of inner sphere, a = 11.5 cm = 0.115 m
radius of outer sphere, b = 16.5 cm = 0.165 m
Voltage, V = 100 V
the capacitance of the spherical capacitor is given by
[tex]C = \frac{4\pi \epsilon _{0}ab}{b-a}[/tex]
[tex]C = \frac{0.115\times 0.165}{9\times 10^{9}\left ( 0.165-0.115 \right )}[/tex]
C = 4.22 x 10^-11 F
Charge, Q = c x V
Q = 4.22 x 10^-11 x 100
Q = 4.22 x 10^-9 C
(a) r = 11.6 cm = 0.116 m
The electric field at a distance r is given by
[tex]E=\frac{KQ}{r^{2}}[/tex]
Where, K is the Coulombic constant
[tex]E=\frac{9\times 10^{9}\times 4.22\times 10^{-9}}{0.116\times 0.116}[/tex]
E = 2820.3 N/C
The energy density is given by
[tex]u = \frac{1}{2}\epsilon _{0}E^{2}[/tex]
[tex]u = \frac{1}{2}\times 8.854\times 10^{-12}\times 2820.3^{2}[/tex]
u = 3.52 x 10^-5 J/m³
(b) r = 16.4 cm = 0.164 m
The electric field at a distance r is given by
[tex]E=\frac{KQ}{r^{2}}[/tex]
Where, K is the Coulombic constant
[tex]E=\frac{9\times 10^{9}\times 4.22\times 10^{-9}}{0.164\times 0.164}[/tex]
E = 1412.1 N/C
The energy density is given by
[tex]u = \frac{1}{2}\epsilon _{0}E^{2}[/tex]
[tex]u = \frac{1}{2}\times 8.854\times 10^{-12}\times 1412.1^{2}[/tex]
u = 8.83 x 10^-6 J/m³