Answer:
we determine that none of the ordered pair is a solution of [tex]3y\:+\:2\:=\:2x\:-\:5[/tex] as none of the ordered pairs satisfy the equation.
Step-by-step explanation:
Considering the equation
[tex]3y\:+\:2\:=\:2x\:-\:5[/tex]
[tex]3y\:+\:2\:=\:2x\:-\:5[/tex]
[tex]3\left(2\right)\:+\:2\:=\:2\left(-5\right)\:-\:5[/tex]
[tex]8=-15[/tex] ∵ L.H.S ≠ R.H.S
FALSE
[tex]3y\:+\:2\:=\:2x\:-\:5[/tex]
[tex]3\left(-5\right)\:+\:2\:=\:2\left(0\right)\:-\:5[/tex]
[tex]-13=-5[/tex] ∵ L.H.S ≠ R.H.S
FALSE
[tex]3y\:+\:2\:=\:2x\:-\:5[/tex]
[tex]3\left(1\right)+\:2\:=\:2\left(5\right)-\:5[/tex]
[tex]5\:=-5[/tex] ∵ L.H.S ≠ R.H.S
FALSE
[tex]3y\:+\:2\:=\:2x\:-\:5[/tex]
[tex]3\left(5\right)+\:2\:=\:2\left(7\right)-\:5\:\:[/tex]
[tex]17=9[/tex] ∵ L.H.S ≠ R.H.S
FALSE
From the above calculations, we determine that none of the ordered pair is a solution of [tex]3y\:+\:2\:=\:2x\:-\:5[/tex] as none of the ordered pairs satisfy the equation.