Answer: 122.9 g of [tex]Si[/tex] will be left from the given masses of both reactants.
Explanation:
[tex]2Cr_2O_3(s)+3Si(s)\rightarrow 4Cr(l)+3SiO_2(s)[/tex]
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} Cr_2O_3=\frac{139.00}{152}=0.91moles[/tex]
[tex]\text{Moles of} Si=\frac{161.00}{28}=5.75moles[/tex]
According to stoichiometry :
2 moles of [tex]Cr_2O_3[/tex] require 3 moles of [tex]Si[/tex]
Thus 0.91 moles of [tex]Cr_2O_3[/tex] will require=[tex]\frac{3}{2}\times 0.91=1.36moles[/tex] of [tex]Si[/tex]
Thus [tex]Cr_2O_3[/tex] is the limiting reagent as it limits the formation of product and [tex]Si[/tex] is the excess reagent.
Thus (5.75-1.36) = 4.39 moles of excess reagent.
Mass of [tex]Si=moles\times {\text {Molar mass}}=4.39moles\times 28g/mol=122.9g[/tex]
Thus 122.9 g of [tex]Si[/tex] will be left from the given masses of both reactants.