Answer:
Therefore The inlet pipe can fill the pond in 3.57 hours
and the hose can fill the pond in (3.57+1)=4.57 hours.
Step-by-step explanation:
Let, The inlet pipe fill the goldfish pond in x hours
So the hose fill the goldfish pond in (x+1) hours.
Then inlet pipe fill [tex]\frac{1}{x}[/tex] parts of the pond in 1 hour.
And the hose filled [tex]\frac{1}{1+x}[/tex] parts of the pond in 1 hour.
In 1 hour the two pipes filled [tex](\frac{1}{x}+\frac{1}{x+1})[/tex] parts of the pond
[tex]=\frac{x+1+x}{x(x+1)}[/tex] parts
[tex]=\frac{2x+1}{x^2+x}[/tex] parts
Given that The inlet pipe and hose together can fill the pond in 2 hour.
Then , in 2 hour the two pipes filled [tex]=2(\frac{2x+1}{x^2+x})[/tex] parts of the pond.
The pond is 1 part.
According to the problem,
[tex]2(\frac{2x+1}{x^2+x})=1[/tex]
[tex]\Rightarrow 2(2x+1)=x^2+x[/tex]
[tex]\Rightarrow x^2+x=4x+2[/tex]
⇒x²+x-4x-2=0
⇒x²-3x-2=0
[tex]\Rightarrow x=\frac{-(-3)\pm\sqrt{(-3)^2-4.1(-2)}}{2.1}[/tex]
[tex]=\frac{3\pm\sqrt{17}}{2}[/tex]
=3.56,-0.561
Since time can't negative.
Then x =3.57 hours.
Therefore The inlet pipe can fill the pond in 3.57 hours
and the hose can fill the pond in (3.57+1)=4.57 hours.