Answer:
Part 1) [tex]A=28.96^o[/tex]
Part 2) [tex]B=46.57^o[/tex]
Part 3) [tex]C=104.47^o[/tex]
Step-by-step explanation:
step 1
Find the measure of angle A
Applying the law of cosines
[tex]a^2=b^2+c^2-2(b)(c)cos(A)[/tex]
we have
[tex]a=10\ cm\\b=15\ cm\\c=20\ cm[/tex]
substitute
[tex]10^2=15^2+20^2-2(15)(20)cos(A)[/tex]
Solve for A
[tex]2(15)(20)cos(A)=15^2+20^2-10^2[/tex]
[tex]600cos(A)=525[/tex]
[tex]cos(A)=(525/600)[/tex]
using a calculator
[tex]A=cos^{-1}(525/600)=28.96^o[/tex]
step 2
Find the measure of angle B
Applying the law of cosines
[tex]b^2=a^2+c^2-2(a)(c)cos(B)[/tex]
we have
[tex]a=10\ cm\\b=15\ cm\\c=20\ cm[/tex]
substitute
[tex]15^2=10^2+20^2-2(10)(20)cos(B)[/tex]
Solve for A
[tex]2(10)(20)cos(B)=10^2+20^2-15^2[/tex]
[tex]400cos(B)=275[/tex]
[tex]cos(B)=(275/400)[/tex]
using a calculator
[tex]B=cos^{-1}(275/400)=46.57^o[/tex]
step 3
Find the measure of angle C
we know that
The sum of the interior angles in any triangle must be equal to 180 degrees
so
[tex]A+B+C=180^o[/tex]
we have
[tex]A=28.96^o[/tex]
[tex]B=46.57^o[/tex]
substitute
[tex]28.96^o+46.57^o+C=180^o[/tex]
[tex]C=180^o-75.53^o[/tex]
[tex]C=104.47^o[/tex]