Solve for all the missing angles for triangle ABC: a= 10cm, b=15cm, c= 20cm. State the angles in order (Angle A,B,C) and round answers to the nearest hundredth

Respuesta :

Answer:

Part 1) [tex]A=28.96^o[/tex]

Part 2) [tex]B=46.57^o[/tex]

Part 3) [tex]C=104.47^o[/tex]

Step-by-step explanation:

step 1

Find the measure of angle A

Applying the law of cosines

[tex]a^2=b^2+c^2-2(b)(c)cos(A)[/tex]

we have

[tex]a=10\ cm\\b=15\ cm\\c=20\ cm[/tex]

substitute

[tex]10^2=15^2+20^2-2(15)(20)cos(A)[/tex]

Solve for A

[tex]2(15)(20)cos(A)=15^2+20^2-10^2[/tex]

[tex]600cos(A)=525[/tex]

[tex]cos(A)=(525/600)[/tex]

using a calculator

[tex]A=cos^{-1}(525/600)=28.96^o[/tex]

step 2

Find the measure of angle B

Applying the law of cosines

[tex]b^2=a^2+c^2-2(a)(c)cos(B)[/tex]

we have

[tex]a=10\ cm\\b=15\ cm\\c=20\ cm[/tex]

substitute

[tex]15^2=10^2+20^2-2(10)(20)cos(B)[/tex]

Solve for A

[tex]2(10)(20)cos(B)=10^2+20^2-15^2[/tex]

[tex]400cos(B)=275[/tex]

[tex]cos(B)=(275/400)[/tex]

using a calculator

[tex]B=cos^{-1}(275/400)=46.57^o[/tex]

step 3

Find the measure of angle C

we know that

The sum of the interior angles in any triangle must be equal to 180 degrees

so

[tex]A+B+C=180^o[/tex]

we have

[tex]A=28.96^o[/tex]

[tex]B=46.57^o[/tex]

substitute

[tex]28.96^o+46.57^o+C=180^o[/tex]

[tex]C=180^o-75.53^o[/tex]

[tex]C=104.47^o[/tex]

ACCESS MORE