How do you solve this?
![How do you solve this class=](https://us-static.z-dn.net/files/dac/e06ac8a3e1c84c8a7fba9f9355f22d95.png)
Step-by-step explanation:
a)
[tex] \frac{d}{t} = \frac{600}{12} [/tex]
[tex] \frac{d}{t} = 50[/tex]
[tex]d = 50t[/tex]
b)
[tex] \frac{g}{t} = \frac{12}{6} [/tex]
[tex] \frac{g}{t} = 2[/tex]
[tex]g = 2t[/tex]
c)
[tex] \frac{c}{n} = \frac{100}{80} [/tex]
[tex] \frac{c}{n} = \frac{5}{4} [/tex]
[tex]c = \frac{5}{4} n[/tex]
d)
[tex] \frac{p}{t} = \frac{10000}{500} [/tex]
[tex] \frac{p}{t} = 20[/tex]
[tex]p = 20t[/tex]
Answer:
The rule linking the given variables is the "division rule"
a) d / t = 600/12 ∴ d = 50t
b) g / t = 12/6 ∴ g = 2t
c) $C / n = 100/80 ∴ $C = 1.25n
d) $P / t = 10,000/500 ∴ $P = 20t
Step-by-step explanation:
The rule linking the given variables is the "division rule"
a) For every 12 hours, 600 km is covered ==> [tex]\frac{d(km)}{t(hrs)}[/tex] distance per time
b) Every 6 months, the calf grows 12 cm ==> [tex]\frac{g(cm)}{time(months)}[/tex] height per time
c) Every $100 can buy 80 litres of petrol ==> [tex]\frac{C(dollars)}{n(litres)}[/tex] Cost per litres
d) In every 500 tonnes, profit is $10,000 ==> [tex]\frac{P(dollars)}{t(tonnes)}[/tex] Profit per tonnes