Answer:
x = y = 250 mL
Step-by-step explanation:
The desired concentration of acid (20%) is exactly halfway between the concentrations of the available supplies (10%, 30%). So, the mix will be equal parts of each of those. x and y are both half the total quantity required:
x = y = (500 mL)/2 = 250 mL
_____
If you need an equation to solve this, you can let x = 500 -y and write the equation for the acid volume in the final mix:
10%(500 -y) +30%(y) = 20%(500)
50 -0.1y +0.3y = 100 . . . . . eliminate parentheses
0.2y = 50 . . . . . . . . . . . . . . subtract 50, collect terms
y = 250 . . . . . . . . . . . . . . . multiply by 5 (equivalently, divide by 0.2)
x = 500 -250 = 250