Answer:
The molar mass of the vapor is 43.83 g/mol
Explanation:
Given volume of gas = V = 247.3 mL = 0.2473 L
Temperature = T = 100[tex]^{\circ}C[/tex] = 373 K
Pressure of the gas = P = 745 mmHg (1 atm = 760 mmHg)
[tex]P = \displaystyle \frac{745}{760} \textrm{ atm} = 0.9802 \textrm{ atm}[/tex]
Mass of vapor = 0.347 g
Assuming molar mass of gas to be M g/mol
The ideal gas equation is shown below
[tex]\textrm{PV} =\textrm{nRT} \\\textrm{PV} = \displaystyle \frac{m}{M}\textrm{ RT } \\0.98026 \textrm{ atm}\times 0.2473 \textrm{ L} = \displaystyle \frac{3.47 \textrm{ g}}{M}\times 0.0821 \textrm{ L.atm.mol}^{-1}.K^{-1}\times 373\textrm{K} \\M = 43.834 \textrm{ g/mol}[/tex]
The molar mass of the vapor comes out to be 43.834 g/mol