Answer:
Step-by-step explanation:
a) [tex]\int\limits^{\infty} _1 {\frac{1}{n^4} } \, dn\\ =\frac{n^{-3} }{-3}[/tex]
Substitute limits to get
= [tex]\frac{1}{3}[/tex]
Thus converges.
b) 10th partial sum =
[tex]\int\limits^{10} _1 {\frac{1}{n^4} } \, dn\\ =\frac{n^{-3} }{-3}[/tex]
=[tex]\frac{-1}{3} (0.001-1)\\= 0.333[/tex]
c) Z [infinity] n+1 1 /x ^4 dx ≤ s − sn ≤ Z [infinity] n 1 /x^ 4 dx, (1)
where s is the sum of P[infinity] n=1 1/n4 and sn is the nth partial sum of P[infinity] n=1 1/n4 .
(question is not clear)