1. (a) Use the integral test to show that P[infinity] n=1 1/n4 converges. (b) Find the 10th partial sum, s10, of the series P[infinity] n=1 1/n4 . (c) According to the Remainder Estimate for the Integral Test, we know that Z [infinity] n+1 1 x 4 dx ≤ s − sn ≤ Z [infinity] n 1 x 4 dx, (1) where s is the sum of P[infinity] n=1 1/n4 and sn is the nth partial sum of P[infinity] n=1 1/n4 . Use inequality (1) and s10 from

Respuesta :

Answer:

Step-by-step explanation:

a) [tex]\int\limits^{\infty} _1 {\frac{1}{n^4} } \, dn\\ =\frac{n^{-3} }{-3}[/tex]

Substitute limits to get

= [tex]\frac{1}{3}[/tex]

Thus converges.

b) 10th partial sum =

[tex]\int\limits^{10} _1 {\frac{1}{n^4} } \, dn\\ =\frac{n^{-3} }{-3}[/tex]

=[tex]\frac{-1}{3} (0.001-1)\\= 0.333[/tex]

c) Z [infinity] n+1 1 /x ^4 dx ≤ s − sn ≤ Z [infinity] n 1 /x^ 4 dx, (1)

where s is the sum of P[infinity] n=1 1/n4 and sn is the nth partial sum of P[infinity] n=1 1/n4 .

(question is not clear)

ACCESS MORE