Option A: The equation of a line is [tex]y=-3x+9[/tex]
Explanation:
Given that the two points are [tex](0,9)[/tex] and [tex](3,0)[/tex]
We need to determine the equation of the line that passes through the points [tex](0,9)[/tex] and [tex](3,0)[/tex]
The equation of the line can be determined using the formula,
[tex]y-y_1=m(x-x_1)[/tex]
First, we shall determine the value of the slope m.
Let us substitute the coordinates [tex](0,9)[/tex] and [tex](3,0)[/tex] in the slope formula.
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Thus, we have,
[tex]m=\frac{0-9}{3-0}[/tex]
[tex]m=\frac{-9}{3}[/tex]
[tex]m=-3[/tex]
Now, we shall substitute the slope [tex]m=-3[/tex] and the point [tex](3,0)[/tex] in the formula [tex]y-y_1=m(x-x_1)[/tex], we get,
[tex]y-0=-3(x-3)[/tex]
Simplifying, we get,
[tex]y=-3x+9[/tex]
Thus, the equation of the line is [tex]y=-3x+9[/tex]
Therefore, Option A is the correct answer.