One model for the spread of a rumor is that the rate of spread is proportional to the product of the fraction y of the population who have heard the rumor and the fraction who have not heard the rumor. (a) Write a differential equation that is satisfied by y. (Use k for the constant of proportionality.)

Respuesta :

Answer:

Therefore , [tex]y= \frac{Ae^{kt}}{1+Ae^{kt} }[/tex]

Step-by-step explanation:

The fraction of population who have heard rumor = y

The  fraction of population who haven't heard rumor = 1-y

The rate of of spread (y'(t)) is proportional to the product of the fraction of population who have heard rumor the fraction of population who have heard rumor.

Therefore

y'(t) ∝ y (1-y)

⇒ y'(t) =k y (1-y)   [ k = constant of proportional]

[tex]\Rightarrow \frac{dy}{dt}=ky(1-y)[/tex]

[tex]\Rightarrow \frac{dy}{y(1-y)}=k \ dt[/tex]

Integrating both sides

[tex]\Rightarrow \int\frac{dy}{y(1-y)}=\int k \ dt[/tex]

[tex]\Rightarrow \int \frac{dy}{y}+\int\frac{dy}{1-y}=\int k \ dt[/tex]              [tex][\because \frac{1}{y(1-y}=\frac{1}{y}+\frac{1}{1-y} ][/tex]

[tex]\Rightarrow ln \ y- ln \ |1-y| = kt +c[/tex]      [ c = arbitrary constant]

[tex]\Rightarrow ln|\frac{y}{1-y}|=kt +c[/tex]

[tex]\Rightarrow \frac{y}{1-y}= e^{kt+c}[/tex]

[tex]\Rightarrow \frac{y}{1-y}= Ae^{kt}[/tex]      [ Here [tex]e^c=A[/tex] ]

[tex]\Rightarrow y = Ae^{kt}(1-y)[/tex]

[tex]\Rightarrow y = Ae^{kt}-y Ae^{kt}[/tex]

[tex]\Rightarrow y+y Ae^{kt} = Ae^{kt}[/tex]

[tex]\Rightarrow y(1+Ae^{kt} )= Ae^{kt}[/tex]

[tex]\Rightarrow y= \frac{Ae^{kt}}{1+Ae^{kt} }[/tex]

Therefore , [tex]y= \frac{Ae^{kt}}{1+Ae^{kt} }[/tex]