Respuesta :
Answer:
Total $986.2534
Explanation:
We have to discount the annual bond against the same rate but compounding semiannualy
[tex](1+ 0.0875/2)^2 -1 = r_e\\1.0894140625 - 1 = r_e\\0.0894140625 = r_e[/tex]
Now we discount the 12 coupon payment and the maturity at the given discount rate
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 87.500 (1,000 x 0.0875)
time 12
rate 0.0894140625
[tex]87.5 \times \frac{1-(1+0.0894140625)^{-12} }{0.0894140625} = PV\\[/tex]
PV $628.4172
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 1,000.00
time 12.00
rate 0.0894140625
[tex]\frac{1000}{(1 + 0.0894140625)^{12} } = PV[/tex]
PV 357.84
PV c $628.4172
PV m $357.8362
Total $986.2534