Answer: F = 113.4.[tex]10^{-3}[/tex]N
Explanation: Net Force is the total forces acting in an object. In this case, there are two forces acting on the charge: one due to magnetic field (Fm) and another due to electric field (Fe). So, net force is
F = Fe + Fm
Force due to electric field
To determine this force:
Fe = q.E, where q is the charge and E is electric field.
Calculating:
Fe = q.E
Fe = 1.8.[tex]10^{-6}[/tex].4.6.[tex]10^{3}[/tex]
Fe = 8.28.[tex]10^{-3}[/tex]N
Force due to magnetic field: It can only happens when the charge is in movement, so
Fm = q.(v×B), where v represents velocity and B is magnetic field
The cross product indicates that force is perpendicular to the velocity and the field.
Calculating:
Fm = q.v.B.senθ
As θ=90°,
Fm = q.v.B
Fm = 1.8.[tex]10^{-6}[/tex].3.1.[tex]10^{6}[/tex].1.2.[tex]10^{-3}[/tex]
Fm = 6.696.[tex]10^{-3}[/tex]N
F, Fm and Fe make a triangle. So, using Pythagorean theorem:
F = [tex]\sqrt{Fe^{2} + Fm^{2} }[/tex]
F = [tex]\sqrt{(8.28.10^{-3} )^{2} +(6.696.10^{-3} )^{2} }[/tex]
F = 113.4.[tex]10^{-3}[/tex]N
The net force acting on the charge is F = 113.4.[tex]10^{-3}[/tex]N