Respuesta :
Answer:
(A). The flux is 0.336 N.m²/C
(B). The flux is zero.
Explanation:
Given that,
Length = 4.2 cm
Width = 4.0 cm
Electric field [tex]E=(150 i-200 k)\ N/C[/tex]
Area vector is perpendicular to xy plane
(A). We need to calculate the flux
Using formula of flux
[tex]\phi=E\cdot A[/tex]
Where, E = electric field
A = area
Put the value into the formula
[tex]\phi=(150 i-200 k)\times(4.2\times10^{-2}\times4.0\times10^{-2})k[/tex]
[tex]\phi=-200\times4.2\times10^{-2}\times4.0\times10^{-2}[/tex]
[tex]\phi=-0.336\ N.m^2/C[/tex]
(B). Given electric field
[tex]E=(150i-200j)\ N/C[/tex]
We need to calculate the flux
Using formula of flux
[tex]\phi=E\cdot A[/tex]
Put the value into the formula
[tex]\phi=(150 i-200 j)\times(4.2\times10^{-2}\times4.0\times10^{-2})k[/tex]
Here, The component of k is not given
So, the flux is
[tex]\phi=0[/tex]
Hence, (A). The flux is -0.336 N.m²/C
(B). The flux is zero.
Answer:
Explanation:
Area, A = 4 cm x 4.2 cm = 16.8 cm²
A).
[tex]\overrightarrow{E}=150\widehat{i}-200\widehat{k}[/tex]
Area is in x y plane so
[tex]\overrightarrow{A}=16.8\times 10^{-4}\widehat{k}[/tex]
Electric flux,
[tex]\phi =\overrightarrow{E}.\overrightarrow{A}[/tex]
[tex]\phi =\left ( 150\widehat{i}-200\widehat{k} \right ).\left (16.8\times 10^{-4}\widehat{k} \right )[/tex]
Ф = 0.336 Nm²/C
B).
[tex]\overrightarrow{E}=150\widehat{i}-200\widehat{j}[/tex]
[tex]\phi =\overrightarrow{E}.\overrightarrow{A}[/tex]
[tex]\phi =\left ( 150\widehat{i}-200\widehat{j} \right ).\left (16.8\times 10^{-4}\widehat{k} \right )[/tex]
Ф = 0 Nm²/C