SPEAR is a storage ring at the Stanford Linear Accelerator which has a circulating beam of electrons that are moving at nearly the speed of light (2.998 108 m/s). If a similar ring is about 68.0 m in diameter and has a 0.37 A beam, how many electrons are in the beam

Respuesta :

Answer:

The no. of electron in the beam = [tex]1.64\times10^{12}[/tex]

Explanation:

Given :

The diameter of circular ring = 68 m.

The current flowing in the beam = 0.37 A

Speed of light = [tex]3\times10^{8} ms^{-1}[/tex]

We know that the current is equal to the charge per unit time.

⇒    [tex]I = \frac{Q}{t}[/tex]

∴    [tex]Q=It[/tex]

Here given in the question, electron revolving in a circle with the diameter

[tex]d = 68[/tex]m

⇒ Time take to complete one round [tex](t) =[/tex] [tex]\frac{\pi d }{v}[/tex]

∴    [tex]Q = \frac{I\pi d }{v}[/tex]

     [tex]Q = \frac{0.37 \times 3.14 \times 68}{3 \times 10^{8} }[/tex]

     [tex]Q = 26.33 \times 10^{-8}[/tex]

Now, for finding the no. of electron we have to divide [tex]Q[/tex] to the charge of the electron  [tex]q = 1.6 \times 10^{-19}[/tex]

∴     [tex]n[/tex] =  [tex]\frac{26.33 \times 10^{-8} }{1.6 \times 10^{-19} }[/tex]

      [tex]n = 1.64 \times 10^{12}[/tex]

Thus, the no. of electron in the beam is [tex]1.64 \times 10^{12}[/tex].

ACCESS MORE