Respuesta :
Answer:
A) = 4.7 × 10⁻⁴atm
Explanation:
Given that,
Kp = 1.5*10³ at 400°C
partial pressure pN2 = 0.10 atm
partial pressure pH2 = 0.15 atm
To determine:
Partial pressure pNH3 at equilibrium
The decomposition reaction is:-
2NH3(g) ↔N2(g) + 3H2(g)
Kp = [pH2]³[pN2]/[pNH3]²
pNH3 =√ [(pH2)³(pN2)/Kp]
pNH3 = √(0.15)³(0.10)/1.5*10³ = 4.74*10⁻⁴ atm
[tex]K_p = \frac{[pH_2] ^3[pN_2]}{[pNH_3]^2} \\pNH_3 = \sqrt{\frac{(pH_2)^3(pN_2)}{pNH_3} } \\pNH_3 = \sqrt{\frac{(0.15)^3(0.10)}{1.5 \times 10^3} } \\=4.74 \times 10^-^4atm[/tex]
= 4.7 × 10⁻⁴atm
Answer:
The partial pressure of NH3 at the equilibrium is 4.7 * 10^-4 atm (option A )
Explanation:
Step 1: Data given
Kp = 1.5 * 10³ at 400 °C
Partial pressure of N2 = 0.10 atm
Partial pressure of H2 = 0.15 atm
Step 2: The balanced equation
2 NH3(g) → N2(g) + 3 H2(g)
Step 3: Calculate partial pressure of NH3
Kp = (pN2)*(pH2)³ / (pNH3)²
⇒ with Kp = 1.5*10³
⇒with pN2 = the partial pressure of N2 = 0.10 atm
⇒with pH2 = the partial pressure of H2 = 0.15 atm
⇒ with pNH3 = the partial pressure of NH3 = TO BE DETERMINED
1500 = (0.10*0.15³) / (pNH3)²
(pNH3)² = 0.000000225
pNH3 = 0.00047 atm = 4.7 * 10^10^-4 atm
The partial pressure of NH3 at the equilibrium is 4.7 * 10^-4 atm (option A )