Answer:
[tex]y = 24+64\cdot e^{-150\cdot t}[/tex]
Explanation:
Let solve the differential equation by separating corresponding variables:
[tex]\int\limits^t_0\, dt = -\frac{1}{150} \int\limits^y_{y_{o}} \frac{dy}{y-24}[/tex]
The solution of this equation is:
[tex]t = -\frac{1}{150}\cdot (\ln|y-24|-\ln |y_{o}-24|)[/tex]
The explicit form of the temperature as a function of time is:
[tex]\ln |y-24|=-150\cdot t + \ln |y_{o}-24|[/tex]
[tex]y-24 = C\cdot e^{-150\cdot t}[/tex]
The value of the integration constant is:
[tex]C = 64[/tex]
The complete expression is:
[tex]y = 24+64\cdot e^{-150\cdot t}[/tex]