Answer:
(a). if [tex]\theta[/tex] = 0° , we can pull the greatest possible amount of sand.
(b). The value of weight of sand and box = 2897.43 N
Explanation:
Maximum tension in the cable [tex]T_{max}[/tex] = 1130 N
The coefficient of static friction [tex]\mu[/tex] = 0.39
(a). Let the angle between the cable and the horizontal = [tex]\theta[/tex]
From the free body diagram, T [tex]\cos \theta[/tex] = F ------ (1)
For maximum amount of force value of [tex]\cos \theta[/tex] must be maximum, it is only possible when [tex]\theta[/tex] = 0°
⇒ [tex]\cos \theta[/tex] = [tex]\cos 0[/tex]° = 1
⇒ From equation (1) we get
⇒T = F = 1130 N -------- ( 2 )
therefore if [tex]\theta[/tex] = 0° , we can pull the greatest possible amount of sand.
(b). From the free body diagram,
Force acting on the box F = [tex]\mu[/tex] [tex]R_{N}[/tex]
Put the value of F from equation 2 we get,
⇒ 1130 = 0.39 [tex]R_{N}[/tex]
⇒ [tex]R_{N}[/tex] = 2897.43 N --------- ( 3 )
From Free body diagram, Value of [tex]R_{N}[/tex] is equal to weight of the and and box.
⇒ [tex]R_{N}[/tex] = W
⇒ W = 2897.43 N
This is the value of weight of sand and box.