Explanation:
It is known that relation between torque and angular acceleration is as follows.
[tex]\tau = I \times \alpha[/tex]
and, I = [tex]\sum mr^{2}[/tex]
So, [tex]I_{1} = 2 kg \times (1 m)^{2} + 2 kg \times (1 m)^{2}[/tex]
= 4 [tex]kg m^{2}[/tex]
[tex]\tau_{1} = 4 kg m^{2} \times \alpha_{1}[/tex]
[tex]\tau_{2} = I_{2} \alpha_{2}[/tex]
So, [tex]I_{2} = 2 kg \times (0.5 m)^{2} + 2 kg \times (0.5 m)^{2}[/tex]
= 1 [tex]kg m^{2}[/tex]
as [tex]\tau_{2} = I_{2} \alpha_{2}[/tex]
= [tex]1 kg m^{2} \times \alpha_{2}[/tex]
Hence, [tex]\tau_{1} = \tau_{2}[/tex]
[tex]4 \alpha_{1} = \alpha_{2}[/tex]
[tex]\alpha_{1} = \frac{1}{4} \alpha_{2}[/tex]
Thus, we can conclude that the new rotation is [tex]\frac{1}{4}[/tex] times that of the first rotation rate.