Explanation:
The integrated first law is given by :
[tex][A]=[A]_o\times e^{-k\times t}[/tex]
Where:
[tex][A]_o[/tex] = initial concentration of reactant
[A] = concentration of reactant after t time
k = rate constant
a)
[tex][A_o]=x[/tex]
[tex][A]=\frac{x}{2}[/tex]
t = 1000 s
[tex]\frac{x}{2}=x\times e^{-k\times 1000 s}[/tex]
Solving for k:
[tex]k=0.06934 s^{-1}[/tex]
The rate constant for this reaction is [tex]0.06934 s^{-1}[/tex].
b)
[tex][A_o]=0.67 mol/L[/tex]
[tex][A]=0.53 mol/L[/tex]
t = 25 s
[tex]0.53 mol/L=0.67 mol/L\times e^{-k\times 25s}[/tex]
Solving for k:
[tex]k=0.009376 s^{-1}[/tex]
The rate constant for this reaction is [tex]0.009376 s^{-1}[/tex].
c) 2 A → B +C
[tex][A_o]=0.153 mol/L[/tex]
[tex][A]=?[/tex]
[tex][B]=0.034 mol/L[/tex]
According to reaction, 1 mole of B is obtained from 2 moles of A.
Then 0.034 mole of B will be obtained from:
[tex]\frac{2}{1}\times 0.034 mol= 0.068 mol[/tex] of A
So, the concentration left after 115 seconds:
[tex][A]=0.153 mol/L-0.068 mol/L=0.085 mol/L[/tex]
t = 115 s
[tex]0.085mol/L=0.53 mol/L\times e^{-k\times 115 s}[/tex]
Solving for k:
[tex]k=0.01592 s^{-1}[/tex]
The rate constant for this reaction is [tex]0.01592 s^{-1}[/tex].