Respuesta :
Answer:
a) Let X the random variable that represent the diameters of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(2.514 cm,0.008 cm)[/tex]
Where [tex]\mu=2.514[/tex] and [tex]\sigma=0.008[/tex]
b) For this case we can see the interval required on the figure attached,
c) [tex]P(2.49<X<2.51)=P(\frac{2.49-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{2.51-\mu}{\sigma})=P(\frac{2.49-2.514}{0.008}<Z<\frac{2.51-2.514}{0.008})=P(-3<z<-0.5)[/tex]
And we can find this probability with this difference:
[tex]P(-3<z<-0.5)=P(z<-0.5)-P(z<-3)[/tex]
And in order to find these probabilities we can use tables for the normal standard distribution, excel or a calculator.
[tex]P(-3<z<-0.5)=P(z<-0.5)-P(z<-3)=0.309-0.00135=0.307[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the diameters of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(2.514 cm,0.008 cm)[/tex]
Where [tex]\mu=2.514[/tex] and [tex]\sigma=0.008[/tex]
Part b
For this case we can see the interval required on the figure attached,
Part c
We are interested on this probability
[tex]P(2.49<X<2.51)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(2.49<X<2.51)=P(\frac{2.49-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{2.51-\mu}{\sigma})=P(\frac{2.49-2.514}{0.008}<Z<\frac{2.51-2.514}{0.008})=P(-3<z<-0.5)[/tex]
And we can find this probability with this difference:
[tex]P(-3<z<-0.5)=P(z<-0.5)-P(z<-3)[/tex]
And in order to find these probabilities we can use tables for the normal standard distribution, excel or a calculator.
[tex]P(-3<z<-0.5)=P(z<-0.5)-P(z<-3)=0.309-0.00135=0.307[/tex]
![Ver imagen dfbustos](https://us-static.z-dn.net/files/da2/94ea0ae1091db28b268a775a25d0c620.png)