Answer:
13 and -14 satisfy this condition
Step-by-step explanation:
Let's represent that number as x
and the square of x is x^2
So,
x + x^2 = 182
Subtract 182 from both sides
x + x^2 - 182 = 182 - 182
x + x^2 - 182 = 0
rearrange the quadratic equation
x^2 + x -182 = 0
let's use the quadratic formula
[tex]\frac{-b+\sqrt{b^2-4ac} }{2a}[/tex] or [tex]\frac{-b-\sqrt{b^2-4ac} }{2a}[/tex]
a = 1, b = 1, c = -182
[tex]\frac{-1+\sqrt{1^2-4*1*(-182)} }{2*1}[/tex] or [tex]\frac{-1-\sqrt{1^2-4*1*(-182)} }{2*1}[/tex]
[tex]\frac{-1+\sqrt{1+728} }{2}[/tex] or [tex]\frac{-1-\sqrt{1+728} }{2}[/tex]
[tex]\frac{-1+\sqrt{729} }{2}[/tex] or [tex]\frac{-1-\sqrt{729} }{2}[/tex]
[tex]\frac{-1+{27} }{2}[/tex] or [tex]\frac{-1-{27} }{2}[/tex]
[tex]\frac{26}{2}[/tex] or [tex]\frac{-28}{2}[/tex]
13 or - 14
Lets check
13 + 13^2 = 13 + 169
= 182
Also,
-14 + (-14^2) = -14 + 196
= 182