Three point mass particles are located in a plane: 4.34 kg located at the origin, 8.029 kg at [(6.44 cm),(12.88 cm)], and 2.9078 kg at [(15.8424 cm),(0 cm)]. How far is the center of mass of the three particles from the origin? Answer in units of cm.

Respuesta :

Answer:

9.3155 cm

Explanation:

Let

[tex]m_1=4.34 kg[/tex]

[tex]x_1=0[/tex]

[tex]y_1=0[/tex]

[tex]m_2=8.029 kg[/tex]

[tex]x_2=6.44 cm,y_2=12.88 cm[/tex]

[tex]m_3=2.9078 kg[/tex]

[tex]x_3=15.8424 cm,y_3=0[/tex]

We have to find the center of mass of the three particles from the origin.

[tex]X=\frac{m_1x_1+m_2x_2+m_3x_3}{m_1+m_2+m_3}[/tex]

[tex]X=\frac{0+8.029\times 6.44+15.8424\times 2.9078}{4.34+8.029+2.9078}[/tex]

[tex]X=6.400 cm[/tex]

[tex]Y=\frac{m_1y_1+m_2y_2+m_3y_3}{m_1+m_2+m_3}[/tex]

[tex]Y=\frac{0+8.029\times 12.88+2.9078\times 0}{4.34+8.029+2.9078}[/tex]

[tex]Y=6.769 cm[/tex]

[tex]d=\sqrt{X^2+Y^2}=\sqrt{(6.400)^2+(6.769)^2}=9.3155 cm[/tex]

Hence, the distance of center of mass of the three particles from the origin=9.3155 cm

ACCESS MORE