Answer:
9.3155 cm
Explanation:
Let
[tex]m_1=4.34 kg[/tex]
[tex]x_1=0[/tex]
[tex]y_1=0[/tex]
[tex]m_2=8.029 kg[/tex]
[tex]x_2=6.44 cm,y_2=12.88 cm[/tex]
[tex]m_3=2.9078 kg[/tex]
[tex]x_3=15.8424 cm,y_3=0[/tex]
We have to find the center of mass of the three particles from the origin.
[tex]X=\frac{m_1x_1+m_2x_2+m_3x_3}{m_1+m_2+m_3}[/tex]
[tex]X=\frac{0+8.029\times 6.44+15.8424\times 2.9078}{4.34+8.029+2.9078}[/tex]
[tex]X=6.400 cm[/tex]
[tex]Y=\frac{m_1y_1+m_2y_2+m_3y_3}{m_1+m_2+m_3}[/tex]
[tex]Y=\frac{0+8.029\times 12.88+2.9078\times 0}{4.34+8.029+2.9078}[/tex]
[tex]Y=6.769 cm[/tex]
[tex]d=\sqrt{X^2+Y^2}=\sqrt{(6.400)^2+(6.769)^2}=9.3155 cm[/tex]
Hence, the distance of center of mass of the three particles from the origin=9.3155 cm