Answer:
magnitude of the potential difference is -1.7 V
Explanation:
given data
Charge of uniform density σ = 50 nC/m³ = 50 × [tex]10^{-19}[/tex] C/m³
radius = 5.0 cm = 0.05 m
point A = 2 cm = 0.02 m
point B = 4 cm = 0.04 m
solution
as we know inside rod, we construct a cylindrical Gaussian surface of length L and radius r around the axis.
so electricfield is always perpendicular to the lateral surface area -2πrL
so that
E = [tex]\frac{Q_in}{A\epsilon _o}[/tex] ..........1
E = [tex]\frac{\rho \pi r^2 l}{2\pi r l \epsilon _o}[/tex]
E = [tex]\frac{\rho r}{2\epsilon _o}[/tex]
Δv = - ∫ E.dr
Δv = [tex]\int\limits^{r2}_{r1} {x} \, \frac{\rho r }{2\epsilon _o } dr[/tex]
put here value
Δv = [tex]\frac{\rho }{2\epsilon _o } \int\limits^{0.04}_{0.02} {x} \, r dr[/tex]
Δv = [tex]\frac{\rho }{2\epsilon _o } \times [\frac{r^2}{2}]^{0.04}_{0.02}[/tex]
Δv = [tex]\frac{50\times 10^{-9} }{4\epsilon _o } \times {0.04^2}- {0.02^2}[/tex]
Δv = -1.7 V