Answer:
[tex]\mu=1.5322[/tex]
Explanation:
Given:
Thickness of the paperweight cube, [tex]x=8.55\ cm[/tex]
apparent depth from one side of the inbuilt paper in the plastic cube, [tex]i=4.02\ cm[/tex]
apparent depth from the other side of the inbuilt paper in the plastic cube, [tex]i'=1.56\ cm[/tex]
Now as we know that refractive index is given as:
[tex]\rm \mu=\frac{real\ depth}{apparent\ depth}[/tex]
Since refractive index for an amorphous solid is an isotropic quantity so it remains same in all the direction for this plastic.
[tex]\mu=\mu'[/tex]
[tex]\frac{d}{i} =\frac{d'}{i'}[/tex]
[tex]\frac{d}{4.02}=\frac{8.55-d}{1.56}[/tex]
[tex]d=6.1597\ cm[/tex]
Now the refractive index:
[tex]\mu=\frac{d}{i}[/tex]
[tex]\mu=\frac{6.1596}{4.02}[/tex]
[tex]\mu=1.5322[/tex]