Answer:
[tex]v=+(9.56475-\frac{v}{8})\times t[/tex]
[tex]t=57.9352\ s[/tex]
Explanation:
Given:
mass of the object, [tex]m=80\ kg[/tex]
force of buoyancy acting on the object, [tex]F_B=\frac{m.g}{40} =19.62\ N[/tex]
initial velocity of the object, [tex]u=0\ m.s^{-1}[/tex]
Given that the water resistance acts on the object is proportional to [tex]10\ N.s.m^{-1}[/tex]
So, the net force acting on the object:
[tex]F=m.g-F_B+10\times v[/tex]
[tex]F=784.8-19.62+10.v[/tex]
[tex]F=765.18-10.v[/tex] .........................................(1)
Now the acceleration of the object can be given as:
[tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{765.18-10v}{80}[/tex]
[tex]a=9.56475-\frac{v}{8}[/tex]
From the standard equation of motion:
[tex]v=u+at[/tex]
[tex]v=[/tex] final velocity
[tex]u=[/tex] initial velocity
[tex]t=[/tex] time
[tex]v=+(9.56475-\frac{v}{8})\times t[/tex] .................................(2)
Now the velocity of the object is, [tex]v=60\ m.s^{-1}[/tex]
[tex]60=+(9.56475-\frac{60}{8})\times t[/tex]
[tex]t=57.9352\ s[/tex]