Respuesta :
Answer:
The minimum value of the given function is f(0) = 0
Step-by-step explanation:
Explanation:-
Extreme value :- f(a, b) is said to be an extreme value of given function 'f' , if it is a maximum or minimum value.
i) the necessary and sufficient condition for f(x) to have a maximum or minimum at given point.
ii) find first derivative [tex]f^{l} (x)[/tex] and equating zero
iii) solve and find 'x' values
iv) Find second derivative [tex]f^{ll}(x) >0[/tex] then find the minimum value at x=a
v) Find second derivative [tex]f^{ll}(x) <0[/tex] then find the maximum value at x=a
Problem:-
Given function is f(x) = log ( x^2 +1)
step1:- find first derivative [tex]f^{l} (x)[/tex] and equating zero
[tex]f^{l}(x) = \frac{1}{x^2+1} \frac{d}{dx}(x^2+1)[/tex]
[tex]f^{l}(x) = \frac{1}{x^2+1} (2x)[/tex] ……………(1)
[tex]f^{l}(x) = \frac{1}{x^2+1} (2x)=0[/tex]
the point is x=0
step2:-
Again differentiating with respective to 'x', we get
[tex]f^{ll}(x)=\frac{x^2+1(2)-2x(2x)}{(x^2+1)^2}[/tex]
on simplification , we get
[tex]f^{ll}(x) = \frac{-2x^2+2}{(x^2+1)^2}[/tex]
put x= 0 we get [tex]f^{ll}(0) = \frac{2}{(1)^2}[/tex] > 0
[tex]f^{ll}(x) >0[/tex] then find the minimum value at x=0
Final answer:-
The minimum value of the given function is f(0) = 0