Answer:
Wire used for square is 7.55 m.
Step-by-step explanation:
Let the length of wire cut for square be 'x'.
Given:
Total length of the wire = 25 m
Length of wire for square = 'x'
Length of wire for equilateral triangle = [tex]25-x[/tex]
Now, area of square (a) = [tex]x^2[/tex]
Area of equilateral triangle (e) is given as:
[tex]e=\frac{\sqrt3}{4}(25-x)^2[/tex]
Now, total area (A) is given as:
[tex]A=a+e\\\\A=x^2+\frac{\sqrt3}{4}(25-x)^2[/tex]
Now, in order to maximize 'A', the derivative of area with respect to 'x' must be 0.
∴ [tex]\frac{dA}{dx}=0[/tex]
[tex]\frac{d}{dx}(x^2+\frac{\sqrt3}{4}(25-x)^2)=0\\\\2x-\frac{\sqrt3}{2}(25-x)=0\\\\2x+\frac{x\sqrt3}{2}=\frac{25\sqrt3}{2}\\\\x(2+\frac{\sqrt3}{2})=\frac{25\sqrt3}{2}\\\\x(4+\sqrt3)=25\sqrt3\\\\x=\frac{25\sqrt3}{4+\sqrt3}=7.55\ m[/tex]
Therefore, the length of the wire that is cut for square should be 7.55 m for maximum area.