contestada

A 1.44-mole sample of an ideal gas is allowed to expand at a constant temperature of 258 K. The initial volume is 14.5 L and the final volume is 27.0 L. How much work does the gas perform on its container? Let the ideal-gas constant R = 8.314 J/(mol • K).

1920 J

2340 J

1550 J

1040 J

Respuesta :

Answer:

1920 J

Explanation:

Answer:

19.6 L

Explanation:

In this process we have an isothermal process, a transformation in which the temperature of the gas remains constant.

In an isothermal process, the work done by the ideal gas on the surrounding is:

[tex]W=nRT ln\frac{V_f}{V_i}[/tex]

where:

n is the number of moles of the gas

R is the gas constant

T is the absolute temperature of the gas

[tex]V_i[/tex] is the initial volume of the gas

[tex]V_f[/tex] is the final volume

In this problem, we have:

n = 1.44 mol

T = 258 K is the gas temperature

[tex]V_i=14.5 L[/tex] is the initial volume of the gas

[tex]V_f=27.0 L[/tex] is the final volume

Solving the equation for W, we find the work done by the gas:

[tex]W=(1.44)(8.314)(258)ln\frac{27.0}{14.5}=1920 J[/tex]

ACCESS MORE