Answer:
26 L
Explanation:
According to the first law of thermodynamics, for an ideal gas:
[tex]\Delta U=Q-W[/tex]
where
[tex]\Delta U[/tex] is the change in internal energy of the gas
Q is the heat absorbed by the gas
W is the work done by the gas
The internal energy of a gas depends only on its temperature. Here the temperature of the gas is kept constant (330 K), so the internal energy does not change, therefore
[tex]\Delta U=0[/tex]
So we have
[tex]Q=W[/tex]
The heat added to the gas is
[tex]Q=1.7 kJ = 1700 J[/tex]
So this is also equal to the work done by the gas:
[tex]W=1700 J[/tex]
For a process at constant temperature, the work done by the gas is given by
[tex]W=nRT ln\frac{V_2}{V_1}[/tex]
where:
n is the number of moles
R is the gas constant
T is the temperature of the gas
[tex]V_1[/tex] is the initial volume
[tex]V_2[/tex] is the final volume
In this problem, we have:
W = 1700 J is the work done by the gas
n = 2.00 mol
T = 300 K is the gas temperature
[tex]V_1=19 L[/tex] is the initial volume of the gas
And solving the equation for V2, we find the final volume of the gas:
[tex]V_2=V_1 e^{\frac{W}{nRT}}=(19)e^{\frac{1700}{(2.0)(8.314)(330)}}=26 L[/tex]