contestada

A 2.0-mole sample of an ideal gas is gently heated at constant temperature 330 K. It expands from initial volume 19 L to final volume V2. A total of 1.7 kJ of heat is added during the expansion process. What is V2? Let the ideal-gas constant R = 8.314 J/(mol • K).

32 L

41 L

26 L

35 L

Respuesta :

Answer:

26 L

Explanation:

According to the first law of thermodynamics, for an ideal gas:

[tex]\Delta U=Q-W[/tex]

where

[tex]\Delta U[/tex] is the change in internal energy of the gas

Q is the heat absorbed by the gas

W is the work done by the gas

The internal energy of a gas depends only on its temperature. Here the temperature of the gas is kept constant (330 K), so the internal energy does not change, therefore

[tex]\Delta U=0[/tex]

So we have

[tex]Q=W[/tex]

The heat added to the gas is

[tex]Q=1.7 kJ = 1700 J[/tex]

So this is also equal to the work done by the gas:

[tex]W=1700 J[/tex]

For a process at constant temperature, the work done by the gas is given by

[tex]W=nRT ln\frac{V_2}{V_1}[/tex]

where:

n is the number of moles

R is the gas constant

T is the temperature of the gas

[tex]V_1[/tex] is the initial volume

[tex]V_2[/tex] is the final volume

In this problem, we have:

W = 1700 J is the work done by the gas

n = 2.00 mol

T = 300 K is the gas temperature

[tex]V_1=19 L[/tex] is the initial volume of the gas

And solving the equation for V2, we find the final volume of the gas:

[tex]V_2=V_1 e^{\frac{W}{nRT}}=(19)e^{\frac{1700}{(2.0)(8.314)(330)}}=26 L[/tex]