Answer:
[tex]3.19\times10^4\text{ seconds}[/tex] or 8.86 hours
Step-by-step explanation:
The quantity of material left after a time, t, during a radioactive decay is given by
[tex]N = N_0 e^{-\lambda t}[/tex]
[tex]N_0[/tex] is the initial quantity, [tex]\lambda[/tex] is the decay constant
[tex]\dfrac{N}{N_0} = e^{-\lambda t}[/tex]
[tex]\dfrac{N}{N_0}[/tex] is the fraction left.
Substituting given values from the question,
[tex]0.03 = e^{-\lambda t}[/tex]
[tex]\ln 0.03 =-\lambda t[/tex]
[tex]t = \dfrac{\ln 0.03}{-\lambda}[/tex]
[tex]t = \dfrac{-3.507}{-11\times10^{-5}} = 3.19\times10^4\text{ seconds}[/tex]
This is about 8.86 hours