Answer:
Explanation:
charge on each corner, q = 9.87 micro coulomb
Side of square, a = 36.7 cm
Coulombic constant, K = 8.98 x 10^9 Nm²/C²
Ab = BC = CD = DA = 36.7 cm = 0.367 m
Diagonal, AC = BD = 1.414 x 0.367 = 0.52 m
Electric field at D due to charge at A
[tex]E_{A}=\frac{Kq}{AD^{2}}[/tex]
[tex]E_{A}=\frac{8.98\times 10^{9}\times 9.87\times 10^{-6}}{0.367^{2}}[/tex]
EA = 658053.74 N/C
Electric field at D due to charge at C
[tex]E_{C}=\frac{Kq}{CD^{2}}[/tex]
[tex]E_{C}=\frac{8.98\times 10^{9}\times 9.87\times 10^{-6}}{0.367^{2}}[/tex]
EC = 658053.74 N/C
Electric field at D due to charge at B
[tex]E_{B}=\frac{Kq}{BD^{2}}[/tex]
[tex]E_{B}=\frac{8.98\times 10^{9}\times 9.87\times 10^{-6}}{0.52^{2}}[/tex]
EB = 327783.28 N/C
Resolve the compoents
Ex = EA + EB cos 45
Ex = 658053.74 + 327783.28 x 0.707
Ex = 889831.52 N/C
Ey = EC + EB Sin 45
Ey = 658053.74 + 327783.28 x 0.707
Ey = 889831.52 N/C
The resultant electric field is
[tex]E = \sqrt{E_{x}^{2}+E_{y}^{2}}[/tex]
E = 1.414 x 889831.52 = 1258221.77 N/C
the electric force on the negative charge is
F = q x E
F = 9.87 x 10^-6 x 1258221.77
F = 12.42 N