Answer:
The standard deviation is 0.0002 inch
Step-by-step explanation:
The diameter of the dot produced by a printer is normally distributed with a mean diameter of 0.002 inch.
[tex]\mu = 0.002[/tex]
The probability that a dot meets specifications is between 0.0014 and 0.0026 inch is 0.9973
So,P(0.0014<x<0.0026)=0.9973
Formula: [tex]Z=\frac{x-\mu}{\sigma}[/tex]
So,[tex]P(\frac{0.0014-0.002}{\sigma}<Z<\frac{0.0026-0.002}{\sigma})=0.9973[/tex]
[tex]P(\frac{-0.0006}{\sigma}<Z<\frac{0.0006}{\sigma})=0.9973[/tex]
[tex]2P(\frac{0.0006}{\sigma})=1-0.9973[/tex]
[tex]P(\frac{0.0006}{\sigma})=0.0027[/tex]
Using Z table
[tex]\frac{0.0006}{\sigma}=2.99998[/tex]
[tex]\sigma =0.0002[/tex]
Hence The standard deviation is 0.0002 inch