Ammonia contained in a piston-cylinder assembly, initially saturated vapor at 0o F, undergoes an isothermal process during which its volume (a) doubles, (b) reduces by half. For each case, fix the final state by giving the quality or pressure, in lbf/in.2 , as appropriate. Locate the initial and final states on sketches of the p-v and T-v diagrams.

Respuesta :

ANSWERS:

[tex]-P_{2(a)} =15.6lbf/in^2\\-P_{2(b)} =30.146lbf/in^2\\ T_{2(a)} =0^oF\\T_{2(b)} =0^oF\\x_{2(b)} =49.87percent[/tex]

Explanation:

Given:

Piston cylinder assembly which mean that the process is constant pressure process P=C.

AMMONIA

state(1)

saturated vapor [tex]x_{1} =1[/tex]

The temperature [tex]T_{1} =0^0 F[/tex]

Isothermal process  [tex]T=C[/tex]

a)

[tex]-V_{2} =2V_{1}[/tex] ( double)

b)

[tex]-V_{2} =.5V_{2}[/tex] (reduced by half)

To find the final state by giving the quality in lbf/in we assume the friction is neglected and the system is in equilibrium.

state(1)

using PVT data for saturated ammonia

[tex]-P_{1} =30.416 lbf/in^2\\-v_{1} =v_{g} =9.11ft^3/lb[/tex]

then the state exists in the supper heated region.

a) from standard data

[tex]-v_{1(a)} =2v_{1} =18.22ft^3/lb\\-T_{1} =0^oF[/tex]

[tex]at\\P_{x} =14lbf/in^2\\-v_{x} =20.289 ft^3/kg[/tex]

[tex]at\\P_{y} =16 lbf/in^2\\-v_{y} =17.701ft^3/kg[/tex]

assume linear interpolation

[tex]\frac{P_{x}-P_{2(b)} }{P_{x}- P_{y} } =\frac{v_{x}-v_{1(a)} }{v_{x}-v_{y} }[/tex]

[tex]P_{1(b)}=P_{x} -(P_{x} -P_{y} )*\frac{v_{x}- v_{1(b)} }{v_{x}-v_{y} }\\ \\P_{1(b)} =14-(14-16)*\frac{20.289-18.22}{20.289-17.701} =15.6lbf/in^2[/tex]

b)

[tex]-v_{2(a)} =2v_{1} =4.555ft^3/lb\\v_{g} <v_{2(a)}[/tex]

from standard data

[tex]-v_{f} =0.02419ft^3/kg\\-v_{g} =9.11ft^3/kg\\v_{f} <v_{2(a)} <v_{g}[/tex]

then the state exist in the wet zone

[tex]-P_{s} =30.146lbf/in^2\\v_{2(a)} =v_{f} +x(v_{g} -v_{f} )[/tex]

[tex]x=\frac{v_{2(a)-v_{f} } }{v_{g} -v_{f} } \\x=\frac{4.555-0.02419}{9.11-0.02419} =49.87%[/tex]

Ver imagen zohazoee
ACCESS MORE