Respuesta :
ANSWERS:
[tex]-P_{2(a)} =15.6lbf/in^2\\-P_{2(b)} =30.146lbf/in^2\\ T_{2(a)} =0^oF\\T_{2(b)} =0^oF\\x_{2(b)} =49.87percent[/tex]
Explanation:
Given:
Piston cylinder assembly which mean that the process is constant pressure process P=C.
AMMONIA
state(1)
saturated vapor [tex]x_{1} =1[/tex]
The temperature [tex]T_{1} =0^0 F[/tex]
Isothermal process [tex]T=C[/tex]
a)
[tex]-V_{2} =2V_{1}[/tex] ( double)
b)
[tex]-V_{2} =.5V_{2}[/tex] (reduced by half)
To find the final state by giving the quality in lbf/in we assume the friction is neglected and the system is in equilibrium.
state(1)
using PVT data for saturated ammonia
[tex]-P_{1} =30.416 lbf/in^2\\-v_{1} =v_{g} =9.11ft^3/lb[/tex]
then the state exists in the supper heated region.
a) from standard data
[tex]-v_{1(a)} =2v_{1} =18.22ft^3/lb\\-T_{1} =0^oF[/tex]
[tex]at\\P_{x} =14lbf/in^2\\-v_{x} =20.289 ft^3/kg[/tex]
[tex]at\\P_{y} =16 lbf/in^2\\-v_{y} =17.701ft^3/kg[/tex]
assume linear interpolation
[tex]\frac{P_{x}-P_{2(b)} }{P_{x}- P_{y} } =\frac{v_{x}-v_{1(a)} }{v_{x}-v_{y} }[/tex]
[tex]P_{1(b)}=P_{x} -(P_{x} -P_{y} )*\frac{v_{x}- v_{1(b)} }{v_{x}-v_{y} }\\ \\P_{1(b)} =14-(14-16)*\frac{20.289-18.22}{20.289-17.701} =15.6lbf/in^2[/tex]
b)
[tex]-v_{2(a)} =2v_{1} =4.555ft^3/lb\\v_{g} <v_{2(a)}[/tex]
from standard data
[tex]-v_{f} =0.02419ft^3/kg\\-v_{g} =9.11ft^3/kg\\v_{f} <v_{2(a)} <v_{g}[/tex]
then the state exist in the wet zone
[tex]-P_{s} =30.146lbf/in^2\\v_{2(a)} =v_{f} +x(v_{g} -v_{f} )[/tex]
[tex]x=\frac{v_{2(a)-v_{f} } }{v_{g} -v_{f} } \\x=\frac{4.555-0.02419}{9.11-0.02419} =49.87%[/tex]
![Ver imagen zohazoee](https://us-static.z-dn.net/files/dfc/701ff98e34d99cfa5dc452fe32bab2a4.jpg)