Answer:
The value of entropy change for the process [tex]dS = 0.009 \frac{KJ}{K}[/tex]
Explanation:
Mass of the ideal gas = 0.0027 kilo mol
Initial volume [tex]V_{1}[/tex] = 4 L
Final volume [tex]V_{2}[/tex] = 6 L
Gas constant for this ideal gas ( R ) = [tex]R_{u} M[/tex]
Where [tex]R_{u}[/tex] = Universal gas constant = 8.314 [tex]\frac{KJ}{Kmol K}[/tex]
⇒ Gas constant R = 8.314 × 0.0027 = 0.0224 [tex]\frac{KJ}{K}[/tex]
Entropy change at constant temperature is given by,
[tex]dS = R log _{e} \frac{V_{2}}{V_{1}}[/tex]
Put all the values in above formula we get,
[tex]dS = 0.0224 log _{e} [\frac{6}{4}][/tex]
[tex]dS = 0.009 \frac{KJ}{K}[/tex]
This is the value of entropy change for the process.